IPv6 калькулятор подсетей


Параметр Значение
Сокращенный IPv6 адрес fe80::200:f8ff:fe21:67cf
Полный IPv6 адрес fe80:0000:0000:0000:0200:f8ff:fe21:67cf
Длина префикса 96
Маска префикса ffff:ffff:ffff:ffff:ffff:ffff:0000:0000
Первый адрес fe80:0000:0000:0000:0200:f8ff:0000:0000
Последний адрес fe80:0000:0000:0000:0200:f8ff:ffff:ffff
Количество доступных адресов 4 294 967 296

Ссылка на эту страницу: shootnick.ru/ip6_calc/fe80--200-f8ff-fe21-67cf/96

Так же у нас есть IPv4 калькулятор подсетей


Познавательное о IPv6 ...

IPv6 (англ. Internet Protocol version 6) — новая версия интернет-протокола (IP), призванная решить проблемы, с которыми столкнулась предыдущая версия (IPv4) при её использовании в Интернете, за счёт целого ряда принципиальных изменений. Протокол был разработан IETF.

На конец 2012 года доля IPv6 в сетевом трафике составляла около 1%. К концу 2013 года ожидался рост до 3%. Согласно статистике Google на октябрь 2018 года, доля IPv6 в сетевом трафике составляла около 25%. В России коммерческое использование операторами связи невелико (не более 1% трафика). DNS-серверы многих российских регистраторов доменов и провайдеров хостинга используют IPv6.

После того, как адресное пространство в IPv4 закончится, два стека протоколов — IPv6 и IPv4 — будут использоваться параллельно (англ. dual stack), с постепенным увеличением доли трафика IPv6, по сравнению с IPv4. Такая ситуация станет возможной из-за наличия огромного количества устройств, в том числе устаревших, не поддерживающих IPv6 и требующих специального преобразования для работы с устройствами, использующими только IPv6.

В конце 1980-х стала очевидна необходимость разработки способов сохранения адресного пространства Интернета. В начале 1990-х, несмотря на внедрение бесклассовой адресации, стало ясно, что этого недостаточно для предотвращения исчерпания адресов и необходимы дальнейшие изменения инфраструктуры Интернета. К началу 1992 года появилось несколько предложений, и к концу 1992 года IETF объявила конкурс для рабочих групп на создание интернет-протокола следующего поколения (англ. IP Next Generation — IPng). 25 июля 1994 года IETF утвердила модель IPng, с образованием нескольких рабочих групп IPng. К 1996 году была выпущена серия RFC, определяющих Интернет-протокол версии 6, начиная с RFC 1883.

IETF назначила новому протоколу версию 6, так как версия 5 была ранее назначена экспериментальному протоколу, предназначенному для передачи видео и аудио.

Оценки времени полного исчерпания IPv4-адресов различались в 2000-х. Так, в 2003 году директор APNIC Пол Уилсон (англ. Paul Wilson) заявил, что, основываясь на темпах развёртывания сети Интернет того времени, свободного адресного пространства хватит на одно—два десятилетия. В сентябре 2005 года Cisco Systems предположила, что пула доступных адресов хватит на 4—5 лет.

3 февраля 2011 агентство IANA распределило последние 5 блоков /8 IPv4 региональным интернет-регистраторам. На этот момент ожидалось, что общий запас свободных блоков адресов у региональных интернет-регистраторов (RIR) закончится в течение срока от полугода (APNIC) до пяти лет (AfriNIC).

По состоянию на сентябрь 2015 года, об исчерпании общего запаса свободных блоков IPv4-адресов и ограничениях на выдачу новых диапазонов адресов объявили все региональные регистраторы, кроме AfriNIC; ARIN объявил о полном исчерпании свободных IPv4-адресов, а для остальных регистраторов этот момент прогнозируется начиная с 2017 года. Выделение IPv4-адресов в Европе, Азии и Латинской Америке (регистраторы APNIC, RIPE NCC и LACNIC) продолжается блоками /22 (по 1024 адреса).

8 июня 2011 года состоялся Международный день IPv6 — мероприятие по тестированию готовности мирового интернет-сообщества к переходу с IPv4 на IPv6, в рамках которого участвующие в акции компании добавили к своим сайтам IPv6-записи на один день. Тестирование прошло успешно, накопленные данные будут проанализированы и учтены при последующем внедрении протокола и для составления рекомендаций.

Перевод на IPv6 начал осуществляться внутри Google с 2008 года. Тестирование IPv6 признано успешным. 6 июня 2012 года состоялся Всемирный запуск IPv6. Интернет-провайдеры включат IPv6 как минимум для 1% своих пользователей (уже подписались AT&T, Comcast, Free Telecom, Internode, KDDI, Time Warner Cable, XS4ALL). Производители сетевого оборудования активируют IPv6 в качестве настроек по умолчанию в маршрутизаторах (Cisco, D-Link). Веб-компании включат IPv6 на своих основных сайтах (Google, Facebook, Microsoft Bing, Yahoo), а некоторые переводят на IPv6 также корпоративные сети. В спецификации стандарта мобильных сетей LTE указана обязательная поддержка протокола IPv6.

Иногда утверждается, что новый протокол может обеспечить до 5·1028 адресов на каждого жителя Земли. Такое большое адресное пространство было введено ради иерархичности адресов (это упрощает маршрутизацию). Тем не менее, увеличенное пространство адресов сделает NAT необязательным. Классическое применение IPv6 (по сети /64 на абонента; используется только unicast-адресация) обеспечит возможность использования более 300 млн IP-адресов на каждого жителя Земли.

Из IPv6 убраны функции, усложняющие работу маршрутизаторов:

Несмотря на больший по сравнению с предыдущей версией протокола размер адреса IPv6 (16 байтов вместо 4), заголовок пакета удлинился всего лишь вдвое: с 20 до 40 байт.

Улучшения IPv6 по сравнению с IPv4:

При инициализации сетевого интерфейса ему назначается локальный IPv6-адрес, состоящий из префикса fe80::/10 и идентификатора интерфейса, размещённого в младшей части адреса. В качестве идентификатора интерфейса часто используется 64-битный расширенный уникальный идентификатор EUI-64, часто ассоциируемый с MAC-адресом. Локальный адрес действителен только в пределах сетевого сегмента канального уровня и используется для обмена информационными ICMPv6-пакетами.

Для настройки других адресов узел может запросить информацию о настройках сети у маршрутизаторов, отправив ICMPv6-сообщение «Router Solicitation» на групповой адрес маршрутизаторов. Маршрутизаторы, получившие это сообщение, отвечают ICMPv6-сообщением «Router Advertisement», в котором может содержаться информация о сетевом префиксе, адресе шлюза, адресах рекурсивных DNS серверов, MTU и множестве других параметров. Объединяя сетевой префикс и идентификатор интерфейса, узел получает новый адрес. Для защиты персональных данных идентификатор интерфейса может быть заменён на псевдослучайное число.

Для большего административного контроля может быть использован DHCPv6, позволяющий администратору маршрутизатора назначать узлу конкретный адрес.

Для провайдеров может использоваться функция делегирования префиксов клиенту, что позволяет клиенту просто переходить от провайдера к провайдеру, без изменения каких-либо настроек.

Введение в протоколе IPv6 поля «Метка потока» позволяет значительно упростить процедуру маршрутизации однородного потока пакетов. Поток — это последовательность пакетов, посылаемых отправителем определённому адресату. При этом предполагается, что все пакеты данного потока должны быть подвергнуты определённой обработке. Характер данной обработки задаётся дополнительными заголовками.

Допускается существование нескольких потоков между отправителем и получателем. Метка потока присваивается узлом-отправителем путём генерации псевдослучайного 20-битного числа. Все пакеты одного потока должны иметь одинаковые заголовки, обрабатываемые маршрутизатором.

При получении первого пакета с меткой потока маршрутизатор анализирует дополнительные заголовки, выполняет предписанные этими заголовками функции и запоминает результаты обработки (адрес следующего узла, опции заголовка переходов, перемещение адресов в заголовке маршрутизации и т.д.) в локальном кэше. Ключом для такой записи является комбинация адреса источника и метки потока. Последующие пакеты с той же комбинацией адреса источника и метки потока обрабатываются с учётом информации кэша без детального анализа всех полей заголовка.

Время жизни записи в кэше составляет не более 6 секунд, даже если пакеты этого потока продолжают поступать. При обнулении записи в кэше и получении следующего пакета потока пакет обрабатывается в обычном режиме, и для него происходит новое формирование записи в кэше. Следует отметить, что указанное время жизни потока может быть явно определено узлом отправителем с помощью протокола управления или опций заголовка переходов и может превышать 6 секунд.

Обеспечение безопасности в протоколе IPv6 осуществляется с использованием протокола IPsec, поддержка которого является обязательной для данной версии протокола.

Приоритет пакетов маршрутизаторы определяют на основе первых шести бит поля Traffic Class. Первые три бита определяют класс трафика, оставшиеся биты определяют приоритет удаления. Чем больше значение приоритета, тем выше приоритет пакета.

Разработчики IPv6 рекомендуют использовать для определённых категорий приложений следующие коды класса трафика:

В отличие от SSL и TLS, протокол IPsec позволит шифровать любые данные (в том числе UDP) без необходимости какой-либо поддержки со стороны прикладного ПО.

Существуют различные типы адресов IPv6: одноадресные (Unicast), групповые (Anycast) и многоадресные (Multicast).

Адреса типа Unicast хорошо всем известны. Пакет, посланный на такой адрес, достигает в точности интерфейса, который этому адресу соответствует.

Адреса типа Anycast синтаксически неотличимы от адресов Unicast, но они адресуют группу интерфейсов. Пакет, направленный такому адресу, попадёт в ближайший (согласно метрике маршрутизатора) интерфейс. Адреса Anycast могут использоваться только маршрутизаторами.

Адреса типа Multicast идентифицируют группу интерфейсов. Пакет, посланный на такой адрес, достигнет всех интерфейсов, привязанных к группе многоадресного вещания.

Широковещательные адреса IPv4 (обычно xxx.xxx.xxx.255) выражаются адресами многоадресного вещания IPv6. Крайние адреса подсети IPv6 (например, xxxx:xxxx:xxxx:xxxx:0:0:0:0 и xxxx:xxxx:xxxx:xxxx:ffff:ffff:ffff:ffff для подсети /64) являются полноправными адресами и могут использоваться наравне с остальными.

Группы цифр в адресе разделяются двоеточиями (например, fe80:0:0:0:200:f8ff:fe21:67cf). Незначащие старшие нули в группах могут быть опущены. Большое количество нулевых групп может быть пропущено с помощью двойного двоеточия (fe80::200:f8ff:fe21:67cf). Такой пропуск должен быть единственным в адресе.

Типы Unicast-адресов

RFC 4193, соответствуют внутренним IP-адресам, которыми в версии IPv4 являлись 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16. Начинаются с цифр FCxx: и FDxx:.

Типы Multicast-адресов
Адреса мультикаст бывают двух типов:

Пакеты состоят из управляющей информации, необходимой для доставки пакета адресату, и полезных данных, которые требуется переслать. Управляющая информация делится на содержащуюся в основном фиксированном заголовке, и содержащуюся в одном из необязательных дополнительных заголовков. Полезные данные, как правило, это дейтаграмма или фрагмент протокола более высокого транспортного уровня, но могут быть и данные сетевого уровня (например ICMPv6, OSPF).

IPv6-пакеты обычно передаются с помощью протоколов канального уровня, таких как Ethernet, который инкапсулирует каждый пакет в кадр. Но IPv6-пакет может быть передан с помощью туннельного протокола более высокого уровня, например в 6to4 или Teredo.

Адреса IPv6 отображаются как восемь четырёхзначных шестнадцатеричных чисел (то есть групп по четыре символа), разделённых двоеточием. Пример адреса:

2001:0db8:11a3:09d7:1f34:8a2e:07a0:765d

Если две и более групп подряд равны 0000, то они могут быть опущены и заменены на двойное двоеточие (::). Незначащие старшие нули в группах могут быть опущены. Например, 2001:0db8:0000:0000:0000:0000:ae21:ad12 может быть сокращён до 2001:db8::ae21:ad12, или 0000:0000:0000:0000:0000:0000:ae21:ad12 может быть сокращён до ::ae21:ad12. Сокращению не могут быть подвергнуты 2 разделённые нулевые группы из-за возникновения неоднозначности.

Также есть специальная нотация для записи встроенного и отображённого IPv4 на IPv6. В ней последние 2 группы знаков заменены на IPv4-адрес в его формате. Пример:

::ffff:192.0.2.1

При использовании IPv6-адреса в URL необходимо заключать адрес в квадратные скобки:

http://[2001:0db8:11a3:09d7:1f34:8a2e:07a0:765d]/

Если необходимо указать порт, то он пишется после скобок:

http://[2001:0db8:11a3:09d7:1f34:8a2e:07a0:765d]:8080/